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ABSTRACT

A water-tunnel study on a 1/48-scale model of the X-29A aircraft was performed at the NASA Dry-

den Flow Visualization Facility. The water-tunnel test enhanced the results of the X-29A flight tests by

providing flow-visualization data for comparison and insights into the aerodynamic characteristics of the

aircraft. The model was placed in the water tunnel at angles of attack from 20 ° to 55 ° and with angles of

sideslip from 0 ° to 5 °. In general, flow-visualization techniques provided useful information on vortex

formation, separation, and breakdown and their role in yaw asymmetries and tail buffeting. Asymmetric

forebody vortices were observed at angles of attack greater than 30 .0 with 0 ° sideslip and greater than 20 °

with 5 ° sideslip. While the asymmetric flows observed in the water tunnel did not agree fully with the

flight data, they did show some of the same trends. In addition, the flow visualization indicated that the

interaction of forebody vortices and the wing wake at angles of attack between 20 ° and 35 ° may cause

vertical-tail buffeting observed in flight.

INTRODUCTION

The NASA Dryden Flight Research Facility began flight testing the X-29A aircraft on

December 14 1984. The original tests with the first aircraft covered a flight envelope that went up

to Mach 1.48, just above an altitude of 50,000 ft, and up to an angle of attack of 22..5 ° (ref. 1).

On May23, 1989 the second X-29A made its maiden flight, marking the beginning of

the high-angle-of-attack expansion program. The expansion involved tests that attained a maximum

transient angle of attack (_) of 67 °. The aerodynamic-characterization phase of flight tests with the sec-

ond X-29A was conducted from July through September 1991. An objective of these flight tests was to

inject smoke beneath the nose strake of the aircraft to examine the formation of the off-surface vortices

and separated flow over the forebody of the aircraft,. Videos and still photographs recorded during flight

provided valuable insight into the formation, separation, and breakdown of vortices.

Interesting results from these flight tests showed that at zero sideslip (13 = 0 °) yaw asymmetries

develop above tx = 40 ° (refs. 2--4). Above ct = 40 ° the body axis yawing moment, Cno, becomes positive

and reaches a maximum at tx = 45 ° From tx = 45 ° to 48 ° C a is decreasing but still positive. The yaw
° O 0 . . °

asymmetry transitions from positive to negative at tx = 48, and Cno becomes increasingly negauve as

0_ is increased up to 55 °. The presence of strong asymmetric forebddy vortices at these high angles of

attack may explain the yaw asymmetry. Wind-tunnel tests conducted at NASA Langley Research Center

show that above ct - 25 ° to 30 °, the forebody design is the most dominant configuration feature affecting

the flow field (ref. 5). Another possible vortex-related phenomenon is the tail buffeting that begins at

0_ - 20 ° and peaks at ct = 300. *

To gain insight to the flight results, a water-tunnel test was conducted at the NASA Dryden Flow

Visualization Facility. The water-tunnel test showed the flow phenomena that caused the yawing

moments and tail buffeting measured in flight. In addition, the results from this study provided a flow-

visualization database on the high-angle-of-attack characteristics of the X-29A.

The NASA Dryden water tunnel provides an excellent opportunity for viewing the formation of vorti-

ces and separated flow at high angles of attack. The low flow rates attained in the water tunnel result in

lower Reynolds numbers than those generated in flight. However, high-angle-of-attack flow fields that

*Ryan, Robert, "X-29 Strucuual Load Results From the High Alpha/0.60 Mach Envelope Expansion," Grumman Air-
craft Systems Interoffice Memorandum, 30 Aug. 1990 (copy available from author of this paper).



exhibit separationeverywherealong the leadingedgeof the wing and arevortex dominatedcan be
well-simulatedin a low Reynoldsnumber-generatingwater tunnel (ref. 6). At the stall angleof attack,
sharpleadingedgesexhibitanadversepressuregradientthatcausestheflow to separate.Becausethegra-
dientis soadverse,it is likely to trip theflow for arangeof Reynoldsnumbers.Thus,whenleading-edge
separationoccurs,theflow field is lessReynoldsnumberdependent.At high anglesof attack,theX-29A
exhibitsvortex-dominatedflow andseparationat the leadingedgeof the wing, andthusthe useof the
watertunnelwasconsideredappropriatefor this study.

The water-tunneltestwas modeledafter the aerodynamic-characterizationflight test (ref. 7). The
anglesof attackwerevariedfrom a = 20° to 55°. Sideslipanglewasvariedfrom 13= 0° to 5°. Canard
settingswerebasedonsimulationdatafor theaircraftflying at 15,000ft andat Mach0.2.

APPARATUS AND PROCEDURE

Flow Visualization Facility

The NASA Dryden Flow Visualization Facility is a single-return water tunnel with a 24- by 16- by

72-in. test section. Figure 1 shows a schematic of the water tunnel. The walls are made of 2-in. thick

transparent acrylic plastic. The velocity of the water can be varied from 0 to 13.5 in./sec This test was

conducted at 3.0 in./sec because of the dye-stream clarity at this velocity. The model was sting mounted.

The angle of attack, angle of sideslip, and canard angle could be varied independently during the test.

Model Description

The study used a 1/48-scale model constructed at the NASA Dryden Flow Visualization Facility. The
model was a brass frame covered with machinable fiUer paste that comprised the skin. Inlet flow was sim-

ulated by extracting water through the inlet and out a tube at the base of the model. Flow meters

regulated the flow and simulated flight engine mass flow.

Dye ports placed at various locations on the model provided flow visualization. Figures 2(a)and 2(b)

show the locations of the various dye ports. The dye tubes originated from an external source, were fed

through the interior of the model, and terminated at the ports.

The model had internal dye lines with ports on the forebody, canards, and wings. Additional external

dye lines were added later on the engine inlets and the leading edge of the vertical tail. The purpose of the

engine-inlet dye ports was to determine if the flow over the engine inlets was affecting the character of

the forebody vortices. The vertical-tail dye ports served to determine the character of the flow field in the

region of the vertical tail.

Test Conditions

The water tunnel was operated at a flow velocity of 3.0 in./sec, corresponding to a unit Reynolds

number of 2.5 x 104/ft. The average temperature of the water was 75 ° E

The test was videotaped and photographed using 120-ram film. The still photographs recorded side

and front views between _ = 20 ° to 55 ° and at _ = 0 ° and 5 °. The videotape provided additional data for

detailed analysis of the dynamics and stability of the flow field around the fuselage.



Thecanarddeflectionschedulefor theX-29A aircraft used in the water-tunnel tests is shown in Fig. 3

as canard angle versus angle of attack. Wing flaps were fixed at 20 °, trailing edge down.

RESULTS AND DISCUSSION

The angle of attack of the X-29A model was varied from 20 ° to 55 ° at sideslip angles of 0 ° and 5 °. At

= 20 °, forebody vortices formed at the nose strakes, which have sharp leading edges. Therefore, it is

assumed that the general character of the forebody vortices above a = 20 ° will not be highly Reynolds

number dependent (ref. 6).

In the results presented, vortices are described in terms of strength, breakdown point, and separation

point. In general, the strength of a vortex is characterized by the tighmess of the core and the number of

revolutions per distance along the core. The stronger vortex will always have more revolutions per dis-

tance and may have a tighter core. The results are qualitative and therefore vortex strength in terms of

number of revolutions per distance is not measured, but determined by observation. The breakdown point

is that location at which the core of the vortex is diffused and the fluid motion irregular. Finally, the sepa-

ration point of the vortex refers to the location at which a vortex that has been attached to the fuselage

leaves the surface. After the separation point, the vortex path may flow over the fuselage at a given dis-

tance or sometimes flow into the free stream.

Sideslip Configuration, [3 -0 °

At a = 20 ° (fig. 4), two symmetric weak forebody vortices form and flow down the fuselage along

the left and fight side of the canopy. These vortices separate from the fuselage as they approach the can-

opy, travel past the canopy on eider side, and then follow the fuselage closely again aft of the canopy

until breakdown, which occurs at a point even with the inboard comer of the flap hinge line. Leading

edge flow separation occurs on both the canards and wings.

At a = 25 ° (fig. 5), the breakdown point of the two symmetric forebody vortices has moved farther

forward along the fuselage than at a = 20 ° (fig. 4). This breakdown is nearer the canopy, at a point even

with the trailing edge of the wingtip. The forebody vortices break down as they approach the surface of

the fuselage (fig. 5(b)). A left wingtip vortex flows into the free stream (fig. 5(a)). Weak canard vortices

form along the leading edge and travel outboard to form a weak canard tip vortex.

At a = 30 ° (fig. 6), a small amount of asymmetry is seen in the forebody vortex paths aft of the can-

opy. The left forebody vortex follows the fuselage more closely than the fight forebody vortex. The

breakdown point of the forebody vortices has not changed from that at a - 25 °. The canard vortices are

stronger, with a fighter core, and flow into the free stream where they break down at a point even with the

leading edge of the vertical tail. Left and fight symmetric wingtip vortices now appear.

At a = 35 ° (fig. 7), the asymmetry in the forebody vortex paths is more apparent with the left fore-

body vortex staying nearer the fuselage aft of the canopy. In addition, the left forebody vortex breaks

down before the fight forebody vortex, just aft of a point even with the trailing edge of the canard

(fig. 7(a)). The canard tip vortices are stronger, but the turbulence behind the forebody vortex breakdown

appears to cause the canard tip vortex breakdown to occur farther forward than at 0_ = 30 ° (fig. 6).

No wingtip vortices appear at a = 35 °.



At ot = 40 ° (fig. 8), the forebody vortices are stronger and the asymmetry more pronounced than at

ct = 35 ° (fig. 7). The left forebody vortex stays nearer the fuselage and breaks down farther forward than

the fight vortex. The fight forebody vortex breaks down as it passes the top of the vertical tail (fig. 8(b)).

The breakdown point of the left forebody vortex is unchanged between 0_ = 35 ° and 40 °. The canard tip

vortices are stronger at ct = 40 ° than at 35 °. The breakdown of the fight canard tip vortex occurs farther

forward than that of the left. The left canard tip vortex breaks down as it passes outboard of the leading

edge of the vertical tail.

At ot = 45 ° (fig. 9), the forebody vortices are stronger than at ot = 40 ° (fig. 8), and the fight forebody
vortex flows into the free stream and breaks down far aft of the model. The left forebody vortex is nearer

the top of the fuselage and breaks down farther forward, over the centering of the fuselage, even with the

trailing edge of the canard tip. The strength of the canard tip vortices is similar to that at ct = 40 °, but the

breakdown point of the left vortex is farther forward and breaks down over the traUing edge of the left

wing. The breakdown point of the fight canard tip vortex has not changed from that at 0t = 40 °.

At ot = 50 ° (fig. 10), the vortex asymmetry on the forebody switches from the strong, dominant fight

forebody vortex shown at ct = 45 ° (fig. 9) to a strong left forebody vortex. At this angle of attack, the left

forebody vortex separates from the forebody forward of the canopy, moves outboard, and passes above

and to the left of the vertical tail and strake flaps. The left forebody vortex extends past the base of the air-

craft into the free-stream flow. The fight forebody vortex, however, remains near the forebody, travels to

the left over the canopy and vortex core breakdown occurs at the trailing edge of the fight canard. Both

canard tip vortices are weaker than at ot - 45 °. The stronger left forebody vortex may initiate the break-
down of the left canard vortex, since the two vortices tend to converge as they progress into the

free-stream flow.

At ct = 55 ° (fig. 11), the flow along the forebody is turbulent, and the paths of the two forebody vorti-

ces appear symmetric. However, the forebody vortices appear asymmetric in breakdown, with the left

vortex breaking down before it passes over the canopy and the fight vortex breaking down directly over

the canopy. The canard tip vortices are much weaker than at ot = 50 ° (fig. 10) and break down almost

immediately.

Sideslip Configuration, [_- 5 °

At ct - 20 ° (fig. 12), the flow field on the wings and canards is completely separated. This configura-

tion reveals a weak leeward forebody vortex. The leeward forebody vortex (black dye) (fig. 12(b)), forms

at the nose strake and flows along the left side of the fuselage, where it breaks down as it passes the

left-engine inlet. The windward forebody flow (red dye) comes from underneath the nose, travels around

the fuselage over the canopy, and separates at the aft end of the canopy.

At ct = 25 ° (fig. 13) and ot = 30 ° (fig. 14), the flow fields are similar with only slight variations in the

location of forebody vortices and canard tip vortex strength. At c_ = 25 °, the leeward nose-strake vortex is

stronger than at ct = 20 ° (fig. 12); it flows over the top of the left engine inlet and breaks down at the mid-

point of the left-wing root. The windward flow moves from the side of the fuselage to the top at a point
farther forward than that at ot = 20 °. A left-wingtip vortex appears at tz = 25 °. At ct = 30 °, the breakdown

point of the leeward nose-strake vortex has moved farther aft and now breaks down even with the flap

hinge line of the left wing. The windward flow (a weak forebody vortex), crosses over the centerline of

the canopy. A weak leeward canard vortex breaks down as it passes over the left wing. In comparing the

flow fields at these angles of attack for sideslip angles of 0 ° and 5 °, it is evident that the sideslip creates a

tendency for the leeward forebody vortex to be stronger than the windward forebody vortex. For 0 °



sideslipattheseanglesof attack(figs.5 and6), thestrengthof theforebodyvorticesis aboutthesameon
bothsidesof theaircraft.

At o_= 35° (fig. 15)and o_- 40° (fig. 16),theflow fieldsarealsosimilar with only slight variations.
At _ = 35 °, the leeward forebody vortex flows above the fuselage along the leeward side and breaks

down at a point slightly forward but outboard of the base of the vertical tail (fig. 15(a)). The windward

forebody vortex has increased in strength from _ = 30 ° (fig. 14), and the breakdown point has moved far-

ther aft and outboard along the top of the fuselage. Tip vortices can be seen on both canards and both

wings. The leeward canard vortex breaks down over the left wing. At _ = 40 °, the leeward forebody vor-

tex is stronger than at a - 35 °, and in the region between the canopy and vertical tail, the vortex path is

higher off the surface (fig. 15(b)). Flow from underneath the nose strake and underneath the windward

side of the aircraft now combines (black and red dye) to form the windward forebody vortex. The wind-

ward forebody vortex is stronger than at _ = 35 °, but breakdown occurs sooner, over the canopy. The lee-

ward canard tip vortex appears to break down farther aft than at a - 35 °. The two wingtip vortices have

decreased in strength from _ - 35 ° and break down just aft of each trailing edge. A comparison of the

flow fields for _ - 35 ° and 40 ° at 13 = 0 ° and 5 ° shows that with zero sideslip (figs. 7 and 8), the forebody

vortices tend to be stronger in terms of number of revolutions per distance. In general, with sideslip

added, the results at these angles of attack reveal that the windward canard vortex is stronger than the lee-

ward canard vortex and that the leeward forebody vortex is stronger than the windward forebody vortex.

At tx = 45 ° (fig. 17), the leeward forebody vortex is stronger than at o_ = 40 ° (fig. 16), but breaks

down farther forward, just aft of the canopy. The windward forebody vortex is stronger than at ct = 40 °,

with a fighter core, but the breakdown point is unchanged. The leeward canard vortex is much weaker

than at ct = 40 ° and breaks down just aft of the canard trailing edge. The windward canard tip vortex does

not flow in the direction of the free stream, as it does at tx = 40 ° and below; instead it tends to flow

toward the leeward side of the aircraft, over the vertical tail.

At tx = 50 ° (fig. 18), the leeward forebody vortex is stronger than at tx - 45 ° (fig. 17) and flows into

the free stream where it breaks down aft of the model. Separate nose-strake and forebody vortices are on

the windward side of the model. The nose-strake vortex forms underneath the nose strake on the wind-

ward side (black dye) and flows over the center of the fuselage, where it breaks down approaching the

canopy. The windward forebody vortex (red dye) forms underneath the windward side of the aircraft and

flows over the canopy onto the leeward side, where it breaks down passing over the leeward engine inlet.

At o_ = 50 °, the canard vortices both break down near the leading edge of the wing, whereas at 0_ = 45 °

the canard vortex breakdown is asymmetric. A comparison at 0_ = 50 ° for 13 - 0 ° and 5 ° shows that the

character of the forebody vortices is similar for both cases, with the zero-sideslip forebody vortices

(fig. 10) being stronger.

At _ = 55 ° (fig. 19), the nose-strake vortices (black dye) are stronger and the canard tip vortices are

weaker than at 0_ = 50 ° (fig. 18). The windward forebody vortex (red dye) is much weaker at this angle of

attack and breaks down as it approaches the canopy. The leeward forebody vortex flows into the free

stream and breaks down far aft of the model. The windward nose-strake vortex (black dye) separates

from the fuselage at the canopy and flows above the fuselage until it breaks down above the canard. At

0_ = 55 ° and I] = 5°, the forebody vortices are asymmetric; while at zero sideslip (fig. 11) the forebody

vortices are symmetric.



Correlation of Flow-Field Characteristics and Yaw Asymmetries

As stated previously, yaw asymmetries were noted during the high angle-of-attack envelope expan-

sion phase of flight tests between _ = 30 ° and 55 ° (fig. 20). During the water-tunnel tests, asymmetries

also were noted in the forebody vortices for this angle-of-attack range. The following discussion will

examine the cause of the forebody vortex .asymmetry seen in the water tunnel and the correlation with

yaw asymmetries experienced in flight.

First, it appears that the nose strakes have a profound impact on the formation of the forebody vorti-

ces. During preliminary runs on the model, a small amount of filler paste was discovered on one of the

nose strakes. When the paste was removed, the character of the forebody vortices was changed com-

pletely.

In addition to the nose strakes, the effect of the engine inlets on the forebody vortices was investi-

gated. The results of the tests show that weak vortices formed at the top of the engine inlets. However, the

forebody vortices were much stronger than the engine-inlet vortices, and thus they did not appear to be

affected by the vortices on the engine inlets.

As noted in a previous section, the zero-sideslip forebody vortex asymmetry first appears at tx = 30 °
and increases to a maximum at a = 45 °. This asymmetry is characterized by the right vortex path travel-

ing into the free stream and breaking down aft of the model while the left forebody vortex follows closely

along the fuselage and breaks down behind the canopy (_ - 45 °, fig. 9). At a - 50 ° (fig. 10), this asym-

metry is reversed; the left vortex follows the free stream breaking down far aft of the model while the

right follows the fuselage more closely and breaks down over the trailing edge of the right canard. At

_ - 55 ° (fig. 11), the forebody flow field is turbulent, but the forebody vortex paths appear symmetric.

These trends are summarized qualitatively in Fig. 20.

The forces resulting from these vortex asymmetries could not be measured in the water tunnel. How-

ever, in cases (_ = 35 ° to 40 °) where the left forebody vortex is nearer the fuselage than the right, the

pressure near the fuselage seems lower on the left side than the right, causing a nose-left yawing moment.

Conversely at _ - 50 °, when the right forebody vortex is nearer the fuselage than the left, a nose-right

yawing moment would result. Thus, asynm_etry in the path and breakdown of the forebody vortices may

cause asymmetric yawing moments.

Although the data shown in Fig. 21 reveal that the in-flight yaw asymmetry is the opposite from that

obtained in the water tunnel, slight variations are likely in the geometry of the model forebody and the

actual aircraft forebody. Such slight geometric variations may be enough to establish the asymmetry in

forebody vortices at the farthest forward portion of the forebody. Thus, although the forebody vortex

asymmetry results from the water tunnel do not coincide directly with the in-flight results, they reveal
that the cause of the asymmetric forebody vortices may be the sensitive forward portion of the forebody

and particularly the nose strake.

Angle-of-Attack Range for Known Tail Buffeting

In-flight tail buffeting has been observed to start at tx = 20 °. The maximum buffet activity occurs at

0_ = 30 ° and then dissipates as the angle is increased to tx = 35 ° (foomote, p. 1). The angle of attack on

the X-29A model was varied from 20 ° to 35 ° at zero sideslip to examine the effects of the flow field on

the vertical tail.
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A water-tunnel study was conducted on a 1/48-scale model of the X-29A aircraft to examine

high-angle-of-attack characteristics. Research focused on recording a database of flow characteristics for

a range of angles of attack (or) and sideslip (13) wh_e ex_ning possible causes of yaw asymmetry and

vertical tail buffeting. The angles of attack ranged between 20 ° and 55 ° , while sideslip was varied

between 0 ° and 5 °. Results were presented on the general characteristics of the flow, yaw asymmetry, and

vertical-tail buffeting.

The yaw asymmetry study shows that forebody vortex path and breakdown asymmetries are seen in

the water tunnel in the same angle-of-attack range as the asymmetric yawing moments observed in flight.

Moreover, it is likely that the asymme_ in forebody vortices is caused by slight variations at the forward

portion of the forebody, specifically at the nose strake. This asymmetry in forebody vortices seen at zero

sideslip began at tt = 30 ° with the right forebody vortex stronger and farther off the surface than the left

forebody vortex. The asymmetry increased up to tt - 45 °, at which point the asymme_ switched at

a = 50 ° and the left forebody vortex was stronger and farther off the surface. The forebody vortices

remained asymmetric up to a = 55 °, at which point _e flow field became turbulent and the forebody vor-

tices appeared symmetric.

Water-tunnel results show interaction of the wing wake and the forebody vortices in

the angle-of-attack range for known tail buffeting. The wing wake tends to collide with the forebody vor-

tices trailing along the sides of the fuselage. From an analysis of the video, the flow behind the wings
rotates clockwise behind the right wing and counterclockwise behind the left wing, as seen looking from

the tail toward the nose. This inboard-moving flow is probably a result of the forward swept wing geom-

etry (ref. 7). The forebody vortices each rotate outboard, in a direction opposite to the flow behind the

wing. From ct - 20 ° to 35 °, the forebody vortices and the rotating wing wake collide in the region near

the vertical tail (figs. 4-7). The flow around the vertical tail exhibits a low-frequency pulsing motion

caused by these colliding flows. Increasing or decreasing the dynamic pressure and Reynolds number

would tend to increase or decrease the frequency of pulsing and the force on the vertical tail correspond-

ingly. Depending on these conditions, the interaction of the forebody vortices and wing wake may create

varied frequencies and forces on the vertical tail. Thus a correlation could be made with flight conditions

that exhibit higher dynamic pressures and Reynolds numbers and the conditions observed in the water

tunnel. Figure 6 shows the flow field around the vertical tail at zero sideslip and tz = 30 °.

The strength of the forebody vortices and the location of the flow near the vertical tail also appear to

play an important role in vertical-tail buffeting. At ct = 20 ° (fig. 4), weak forebody vortices form. As the

angle of attack is increased the forebody vortices increase in strength. In the region between ct = 20 ° and

35 ° (figs. 4-7), the flow field interacts with the vertical tail. However, as angle of attack increases above

35 ° (figs. 8-11), the flow field no longer interacts with the vertical tail. Thus it is concluded that the

in-flight vertical-tail buffeting observed between ct = 20 ° and 35 ° is caused by the interaction of the fore-

body vortices and the wing wake.

The effect of sideslip on the flow field around the vertical tail was also examined. As sideslip is

increased, the windward forebody and canard vortex tend to move toward the leeward side of the aircraft.

At ot = 30 ° and 13= 5 ° (fig. 14), the flow from the broken down windward fore_y vortex flows directly

into the vertical tail, and the turbulent flow created by the windward canard impinges on the vertical tail.

These results show that in the case of sideslip the windward forebody vortex and the turbulent flow field

created at the windward canard interacts with the vertical tail in the tail-buffeting angle-of-attack range.

CONCLUDING REMARKS



Asymmetry in forebody and canard vortices was also seen when sideslip was added. For _ = 5 o, the

asymmetry in the path and breakdown of forebody vomces began at _- 20 °, as opposed to a - 30 ° with

zero sideslip, with the formation of one leeward forebody vortex. As the angle of attack was increased,

this leeward forebody vortex increased in strength, until at _ = 50 ° it flowed into the free stream. A

weaker windward forebody vortex formed at _ - 30 ° and a windward nose-strake vortex formed at

a = 50 °. These windward vortices were always weaker than the dominant leeward forebody vortex.

For 13 = 5 o a weak leeward canard vortex forms at _ = 30°; but as the angle of attack is increased,

the windward canard vortex dominates and the leeward canard vortex breaks down sooner. Asymmetry in

the breakdown point of canard vortices was seen in both 0 ° and 5 ° sideslip cases. For zero. sideslip, the

strong asymmetry in the forebody vortices appeared to play a large role in detemlining the breakdown

point of the canard vortices. When sideslip was added, the windward c_ard vortex _d the leeward fore-

body vortex dominated.

The results from the vertical-tail buffeting study reveal that the interacdon of the wing wake and the

forebody vortices in the _ = 20 ° to 35 ° range correlates with in-flight vertical-tail buffeting. The collision

between the forebody vortices and the wing wake creates a pulsing motion of the flow in the region of the
vertical tail. In addition, the wake from the windward forebody and the turbulent flow from the windward

canard at _ - 30 ° and 13 = 5 o impinge on the vertical tN1. At higher dynamic pressures and Reynolds

numbers such as those seen in flight, the interaction of the foreMy vortices, wing wake, and canard flow

in the region of the vertical tail may create the frequency and forces exhibited during in-flight tail

buffeting.

Dryden Flight Research Facility
National Aeronautics and Space Administration

Edwards, California, May 19, 1993
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Figure 2. Concluded.
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Figure 19. Characteristic flow patterns at oc -55 ° and 13 -5 °.
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Figure 20. Effect of angle of attack on forebody vortex strength at 13 = 0°.
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